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Abstract

Edgepreserving denoising is an important task in mddibage processing. In this paper a wav-based multiscale produc
thresholdingscheme for noise suppression of magnetic resoriarages optimized by PSO algorithm has been propose
exploit the wavelet inter scale dependencies, adfagvavelet subbands are multiplied to enhance etigetures while
weakening noise. In the midtale products, edges can be effectively distsiged from noise and an adaptive thresho
calculated and imposed on the products, instedti@wavelet coefficients, to identify an importéeature which is optinzed
by PSO algorithm. Experimentb@n that the proposed scheme is better optimizeldsappresses noise and preserves €

than other wavelet-thresholding denoising methods.
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1. Introduction

Magnetic Resonance Imaging (MRI) is a powerful dizglic
technique. Time averaging of image sequences aitoe
improve the signal-tmoise ratio (SNR) would result

additional acquisition time and reduthe temporal resolutio
The denoising should be performed to improve thade
quality for more accurate diagnosis. Denoising loarappliec
to the real and imaginary channels rather than he
magnitude images. This technique has proved toffeetioe
[6]-[8].In view of this, the additive Gaussian whiteis&
model is adopted in this paper. In this paper, istdte
thresholding scheme to incorporate the merits tfrgcale
dependencies is presented for medical image degoi$iwo
adjacent wavelet ubbands are multiplied to amplify tl
significant features and dilute noise. In contrést other
schemes, thresholding is applied to the multisgateducts
instead of the wavelet coefficients and it canidgtish edge
structures from noise more effaaly. The variance of nois
needs to be estimated to implement the denoisihgrnse. A
noise level estimator optimized by PSO algorithmalso
proposed in this paper.

The rest of the paper is organized as follows:igedt details

on wavelet multiscal@roducts, section Il briefs on adapti
multiscale product thresholding, section IV deaishwPSO
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optimization, section V with experimental resultddasec VI
with results.

2. Waveet Multiscale Products

2.1 Dyadic Wavelet Transform as a Multiscaldge Detector

A wavelet transform represents a signal as a i
combination of elementary atoms that appear aterdifft
resolutions. It is computed by convoluting the ingignal
with dilated wavelet filters recursively. More didaabout the
theory ofwavelets and their applications in signal proces
can be found in Daubechies [1], Meyer [2], Mall&l, [[4],
and Vetterli[5]. The continuous wavelet transforrh any
measurable and square-integrable fundgiian), f € L? (R), at
scale s and position x is defined as

Ws f(x)= £*4 « (%

1)
Where the symbol * denotes the convolution operne
ThenWs f(x) can be written as
dég d
Wet (X = f*(Sd—3( ¥=s—( F65( X
X dx 2)
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It can be seen that the wavelet transfdMs f(X) is the first 1) Compute the DWT of input imadfe up to J scales.
derivative off (x)smoothed byg(x) In particular, wherg(x)

. . . . 2) Calculate the multiscale products .. and preset the
is a Gaussian function, the local extrema detertiginain ) P t|§ if P

Ws f(X) is equivalent to the well-known Canny edgéhreshold%i(j) . Then threshold the wavelet coefficients by
detection [9].The DWT of (x) at dyadic scaléZnd position

X is W TGy ={W ST(x ) P T y) 2t
Wif(x)= f*¢ i( X (3)
The functionf (x) can be recovered from its DWT by PTG y) <t
j=1,...3d=x,y. @
fO) = Ljmo Wif * xj(x) (4 3) Recover the image from the thresholded wavelet

The wavelet used in this paper is the MZ waveletsticted coefﬁmentsw ) an% Gy
by Mallat and Zhong [4]. The wavelet is a quadraipdine

that approximates the first derivative of Gaussiinus, the 3.2 Determination of the Threshold
DWT behaves like a canny edge detector. Detaitaitathe

derivation of the MZ wavelet can be found in [4]. Here the multiscale products threshold is set as

2.2 Multiscale Products t (0 = 5kj (1+ #e )y

“y () (8)
Multiplying the DWT at adjacent scales would amplédge
structures and dilute noise. This favorite propédraas been 3.3 Noise Level Estimation

exploited by Xuet al.[10] and Sadler [11] in noise reduction o N ) 3
and step detection. In this paper, the multiscatelycts of The standard deviation of an additive Gaussianeniiseg

W, f is defined as should be estimated to implement the denoisingreehd&he
Median Absolute Value (MAV) of the wavelet coeféaits at
the finest scale is firsglculated and the standard deviation of

pif(x)= N wi+if(x) noise is then estimated a noise level estimatiethod is
i=-kl (5) also used here. Orthogonal Wavelet Transform (OWT)
computed. OWT is a unitary trans-form, at each Jet\srale
Wherekland k2 are non negative integers and an isolatRe noise standard deviation is equalito Thus, the variance
edge will increase by two. So it is sufficient toplement the 1 \A/is
multiplication at two adjacent scales. Then the DWEale

roduct is 2 _ 2] 2 2
P o —E[W }—ag+a

)
pif (X) = Wif(X).W+1 f( X ©)
Finally, the noise level can be estimated as
3. Adaptive Multiscale Products Thresholding SCA
o N1+7r2 (10)

3.1 The Thresholding Scheme

4. PSO Optimization
In this paper, a de-noising scheme, Huaptive multiscale
products thresholdingo merge the merits of the thresholdingPSO has a fitness evaluation function to computeh ea
technique and wavelet interscale dependenciesdpoped. position’s fitness value [12]. Local bests aredtiely stored
The algorithm is summarized as follows. to workspace variable 1. | stores the best posifaumd by
each particle’s neighbourhood over the course efsisarch.
The second particle’s personal best outperformedetiof the
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rest of the swarm; consequently, the first anddtimarticles

take the second particle’s personal best to be theal best Phase Plot for Particle 1
.Since the third particle had the second-best bpaisonal 0%;;; SRS
bests, its position became the local best of thghbering N S < ;g\ég g
fourth particle. The fifth particle took its ownnsenal best as s xs =555 ;g;;
its local best since it produced the third-bestabfpersonal 210 - S 2 izssE
bests. The location of this value is called thespeal best 2 BTTzees s 2SS
solution Pi. The algorithm involves casting a peapioin of o185 o e s S ERSE S EE S S S
particles over the search space and rememberingodise SETESEESSESS S BE S
solution encountered. For each iteration, all pkasi adjust its AMecesposserssos
velocity vector based on its momentum, and thecefié both Dimension 1
its best solution and the local best solution sfnigighbors. N 2(a)
particles whose velocities and positions are upbate
accordingly are initialized, and the positionshéss values
are calculated. It reduces the computational timieje the
accuracy of the solution is not affected. The pssciterates Phase Plot for Particle 2
until the maximum iteration number is reached oe th e @ ——— =
minimum error condition is satisfied. The procedusé 5 S
generalized algorithm of PSO model is given g-lo s
w = = — -

Via(t) = wVia(t — 1) + clrand( )(Pid(t -D-X- 1)) 2_15%

+ c2rand()(Pu(t — 1) = X;(t — 1)) a-20=" — - . E

-2
(11) " 26 28 3 32 34 36
Xid = Xid(t—-1)+ Vid(t-1) Dimension 1
(12) 2(b)

5. Experimental Results Phase Plot for Particle 3

The proposed method was tested on Magnetic resenanc

images of Head and Brain and it was optimized byOPS ‘:
algorithm. The following figures show the Experirt@n  ol5-
Result of MRI Brain Image L

-
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Figure 2 Shows the Phase Plot of four Particles. ] » )
Figure 3 shows the Positibfour Particles.
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The following figure (4) shows the Experiments oRMHead

4 (a) Original Image

Phase Plot for Particle 1

Image

Figure (4) Proposed (with PSO)

4 (b) Thresholding Image

4(c) SNR after Thresholding
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Figure 6 shows the Position of fourtieles.
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Table 1: Noise Level Estimation And Elapsed Time
Calculation
Sample - sed - sd
data EX|st_|ng Propq Existing Propo:
Calculation (Brain) (Brain) (Head) (Head)
Snr_O 6.3662 6.3662e+00 5.520¢ 5.5209e+0p0
Snr_ft 17.4195 1.7940e+001 14.498P9 1.4874e+0p1
Snr_f 18.2282 1.8925e+001 15.4198 1.5850e+0p1
Elapsed 1.315325 0.457504 1.999646 1.393313
Time (sec) (sec) (sec) (sec)

6. Conclusions

This paper proposes an MRI image denoising schesing an

adaptive wavelet thresholding technique and theigbaris

optimized by PSO algorithm. In this it multipligset adjacent
wavelet subbands to amplify the significant feasused then
applies the thresholding to the multiscale produtts
differentiate the edge structures from noise. Theaptive
threshold was formulated to remove most of the enoithe

PSO method reduces the time and the algorithm éaslow

computation time.
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