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Abstract- For over a century, the primary means of boosting agricultural output has been through 
technological innovation. Novel plant species and synthetic nutrient-management formulas intensification as 
well as the security of food and nourishment. Rapid plant phenotyping, farmland monitoring, in situ soil 
composition assessment, disease diagnosis and surveillance, automation and bundling of agrochemical 
application, weather forecasting, yield prediction, decision support systems (DSS) with real-time agronomic 
advice, and novel approaches to post-harvest handling and traceability are all potential applications of 
machine learning (ML) that may be supported and, in some cases, made possible. But agricultural modernity 
has also brought about ecological deterioration, such as soil erosion and contaminated water and land, which 
could eventually jeopardise food security. Furthermore, more than 75% of crop genetic variety has been lost 
as a result of the prioritization of a limited number of plant varieties. 

 
1. Introduction 

Agricultural modernization has occasionally resulted in more human misery, such as through social 
exploitation and exposure to harmful chemicals. In other cases, agricultural mechanization has followed land 
consolidation closely. This is because small-scale farmers frequently lacked the capital to purchase sophisticated 
equipment and compete with larger landowners who benefited from economies of scale. Larger farms and more 
mechanization have greatly benefited worker productivity, agricultural output, and profitability; nevertheless, they 
have also caused labour displacement, wage losses, and negative effects to rural communities and landscapes.  
            These are not technological failures per se, but rather an inability to foresee and take into consideration the 
effects of technology. Thorough risk evaluation and technological governance structures could potentially prevent. 
In this perspective, we first assess systemic risks in data management, AI and ML design, and large-scale system 
deployment in order to foresee issues and advance mitigation steps. We provide data findability, accessibility, and 
interoperability special consideration in data management. We draw attention to the ways that models used in AI 
and ML design may jeopardise ecosystems and negatively impact the identity, agency, and ownership rights of 
smallholders. We highlight hazards that could expose producers and agrifood supply networks to cyberattacks and 
cascading accidents when considering deployment at scale. Building on frameworks of responsible research and 
innovation, data cooperatives, and hybrid cyber-physical environments for low-risk deployment of experimental 
technologies, we propose a series of ideas to lessen envisioned hazards based on this analysis. We highlight the key 
advantages of these methods and strategies, as well as potential applications of AI in agriculture. 

Farms, farmers, and food security are at risk from AI The research of AI hazards is still in its infancy, and 
different areas present distinct challenges when it comes to bias, inequality, privacy, safety, and security. We take 
into account three categories of risks in global agriculture, a safety-critical system with significant implications for 
human development: (1) risks linked with data, such as collection, access, quality, and trust; (2) risks resulting from 
limited model optimization and unequal technology adoption during the design and early deployment of machine 
learning systems; and (3) risks related to the large-scale implementation of machine learning platforms. In this 
perspective, we first assess systemic risks in data management, AI and ML design, and large-scale system 
deployment in order to foresee issues and advance mitigation steps. We give finding, access, and interoperability of 
data special consideration in data management.  
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 voluntary sustainability standards, to promote sustainable agricultural intensification in corporations 
developing and deploying agricultural sensors, expert systems. 
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We draw attention to the ways that models used in AI and ML design may jeopardise ecosystems and 
negatively impact the identity, agency, and ownership rights of smallholders. We highlight hazards that could 
expose producers and agrifood supply networks to cyberattacks and cascading accidents when considering 
deployment at scale. Building on frameworks of responsible research and innovation, data cooperatives, and hybrid 
cyber-physical environments for low-risk deployment of experimental technologies, we propose a series of ideas to 
lessen envisioned hazards based on this analysis. 

2. Farms, farmers, and food security are at risk from AI 

          The research of AI hazards is still in its infancy, and different areas present distinct challenges when it comes 
to bias, inequality, privacy, safety, and security. We take into account three categories of risks in global agriculture, 
a safety-critical system with significant implications for human development: (1) risks linked with data, such as 
collection, access, quality, and trust; (2) risks resulting from limited model optimisation and unequal technology 
adoption during the design and early deployment of machine learning systems; and (3) risks related to the large-
scale implementation of machine learning platforms. Hazards connected to the collection, use, authenticity, and 
integrity of data. Agronomy, plant breeding, remote sensing, agricultural finance, and other fields are among the 
disciplines that contain agricultural data, which spans from the molecular to the landscape scale. Large volumes of 
data are gathered by domestic and international agricultural research organisations, which may one day enable ML 
models. All too often, though, these data cannot be found, understood, or used again. exposure to harmful chemicals 
and being exploited socially. In other cases, agricultural mechanization has followed land consolidation closely. This 
is because small-scale farmers frequently lacked the capital to purchase sophisticated equipment and compete with 
larger landowners who benefited from economies of scale. Larger farms and more mechanization have greatly 
benefited worker productivity, agricultural output, and profitability; nevertheless, they have also caused labor 
displacement, wage losses, and negative effects to rural communities and landscapes. 
 

3. The risks relating to trust and quality 

The global collaboration of agricultural research institutes, CGIAR, has made FAIR (findable, accessible, 
interoperable, and reusable) data principles its guiding principles in recent years. Syntactic and semantic 
interoperability is still unattainable despite efforts in improving findability through standardization because of 
disorganized or underutilized standards, inconsistent data formats, and structural protocols. Other issues with 
agricultural data are its relevancy and dependability. Research on crops like quinoa, cassava, and sorghum—which 
are vital to the world's poorest producers and subsistence farmers—has lagged behind years of emphasis on staples 
like wheat, rice, and maize. Similar to this, despite their significance to regional food security and dietary diversity, 
the individuals and methods at the core of Indigenous farming systems are frequently underrepresented in data. For 
example, polyculture practices like salvo pasture and forest farming have not been fully taken into account in 
standard agricultural databases. These methods improve soil fertility, manage pests, and preserve agrobiodiversity 
while producing a wide range of food, fodder, and textile products. The use of incomplete, biassed, or irrelevant data 
can lead to agricultural DSS that performs badly, which in turn undermines the trust that smallholders and 
Indigenous farmers have in digital extension services and expert systems, thus jeopardising food security. Hazards 
resulting from uneven adoption and limited optimisation. Previous agricultural systems that optimised for 
production also caused pollution, biodiversity loss, and the emergence of new insect complexes. These concerns are 
well understood, but they might be hard to prevent if artificial intelligence is used to further intensify agriculture and 
put productivity ahead of ecological integrity. Farmers could have better working conditions if autonomous 
equipment and expert systems took over manual, repetitive activities from them18. However, socioeconomic 
injustices that now permeate global agriculture, such as child labour and discrimination based on gender, class, and 
ethnicity, will remain external to ML models used in agriculture unless intentional and inclusive technology design 
is used. This is a serious issue since more than 98 million children work in agriculture, forestry, fishing, and cattle at 
a level that robs them of their youth and 

Concerns about the possible consequences of AI on farmers' labour: The identities, autonomy, and ownership 
rights—including intellectual property—are also likely to surface as the technology becomes more widely used. 
Under such circumstances, there is an obvious risk that smallholders become bound into proprietary systems they do 
not fully comprehend, and large and small farmers would profit unequally.  
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4. Dangers of large-scale AI and ML deployment. 

Larger commercial farms with more financial resources and the capacity to realise marginal productivity 
improvements over wider areas have historically been at the forefront of the adoption and use of earlier succeeding 
waves of technologies for agricultural intensification28. This could lead to a greater gap between large and 
smallholder farmers as commercial farmers are more likely to be the first to gain from AI-driven productivity.  
Simultaneously, we should anticipate a growing dependence of commercial farmers on a limited number of easily 
accessible machine learning platforms, such Tensor Flow and PyTorch, as AI becomes essential for precision 
agriculture. Farmers will bring significant croplands, pastures, and hayfields under the influence of a few common 
ML under these circumstances. 

These dynamics, in particular, run the risk of making agrifood supply chains more susceptible to cyberattacks, 
such as denial-of-service and ransomware attacks, and of interfering with AI-driven equipment, like autonomous 
sprayers, robot swarms for inspecting crops, and self-driving tractors and combine harvesters. The largest meat 
processor in the world, JBS, was the target of a cyberattack in 2021, which hinted to the dangers associated with 
integrating digital technologies into agrifood supply chains. This evolving panorama of cybercrime is further shown 
by a ransomware attack on NEW Cooperative in 2021, which supplies feed grains for 11 million farm animals in the 
United States. In multi-component, multi-agent systems like agriculture, the rapid dissemination of intelligent 
devices may also increase noncelibate, inadvertent dangers. For example, if monocultures—where a plant species' 
single genotype is Moreover, it has been demonstrated that unexpected, cascade system failures occur when 
intelligent agents interact with one another more quickly than humans can react, particularly in human-machine 
hybrid systems. With the increasing integration of digital tools into agriculture and agrifood supply chains, there is a 
possibility of experiencing "flash crashes" similar to those observed in other fields. Mechanisms of governance 
Cooperatives, ownership, and data stewardship. We pinpoint the requirements for more open, equitable, and 
supervised standards and FAIR data frameworks at all stages of the agricultural data value chain, including data 
generation, acquisition, storage, and analysis.    
             

In particular, farmers exchanging data on crop choice, quantity of fertilizer applied, crop composition and 
availability, land surface phenology, and soil type Actual yield, historical crop yield records, and rotations should all 
adhere to the repository and dataset specifications set forth by open-science data-sharing guidelines. A key 
component of this strategy will probably involve addressing ownership issues by democratizing data access and use 
through standards-compliant repositories, which will facilitate more transparent, multi-stakeholder development of 
research and technology34. In this context, as global agriculture struggles with an abundance of data from various 
sources of different kinds, data-stewardship solutions that support agricultural data lakes are crucial. These 
technologies need to safeguard farmers' proprietary rights, guarantee the reliability of the data, specify its intended 
use, and facilitate efficient data mining. Data lakes should facilitate data mining across disciplines, heterogeneities, 
and sources with varying characteristics by utilising industry standards like ontologies and controlled vocabularies. 
 

The CGIAR's Platform for Big Data in Agriculture, for instance, offers tools and workflows36 that 
facilitate the generation of FAIR data with input from many platform-mediated communities of practice. These 
workflows also include the creation and application of ontologies to enhance semantic interoperability. A newer 
approach and possible solution to the demand for more open and democratic administration of farms and farmers' 
data are data cooperatives, or platforms owned and operated by their members. In the US, the Ag Data Coalition 
(ADC) and the Grower Information Services Cooperative (GiSC) are two instances. Farmers can save their data in 
safe data repositories provided by some data cooperatives, like ADC, and choose which research organisations or 
agencies to share it with. Some, like GiSC, provide "data pools" with shared Emerging economies are testing similar 
strategies. For instance, using ADC-like services, Digital Green is creating Farm Stack, a peer-to-peer data-sharing 
standard and platform for Indian farmers. Together, Yara and IBM are collaborating to allow farmers to safely 
exchange data and control who can access it and how. The conflict between data monetization and demo cratised 
access to data is a significant challenge. On the one hand, farmers should receive just compensation for producing 
data if ML systems benefit from the data they supply. Moreover, producers should be encouraged to provide more 
and better-structured data through monetization. However, a number of AI systems offer advantages without 
generating profits, and their use would be constrained if the price of access to A licencing system that disƟnguishes 
between the commercial and non-commercial usage of data.   
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An other option would be to restrict data sharing to those groups—like smallholders in polyculture 
systems—that will collectively profit from it. Data cooperatives might offer a governance framework for examining 
alternatives and choosing actions that are in the best interests of farmers. Conscientious innovation. The hazards 
outlined above highlight the necessity of developing AI systems and services for agriculture that are sensitive to 
context, take into account potential social and ecological repercussions, and put the data owner at, or near, the centre 
of design efforts. Table 1 proposes interventions in the public and commercial sectors to promote anticipatory, 
reflexive, inclusive, and responsive development, and it adapts the responsible research and innovation strategy to 
agricultural AI. For example, anticipatory design in agricultural AI would take into account and evaluate safety 
issues that go beyond data privacy. These could include over-exploitation of agroecosystems or the unsustainable 
use of chemical inputs. When developing reflexive AI, data scientists, applied ecologists, ethicists, and rural 
anthropologists should collaborate thoughtfully to create new machine learning models that protect biodiversity and 
Indigenous knowledge systems and other agricultural paradigms other than industrial farming should be valued in 
inclusive, participatory, human-centered design. These goals can be supported by civil society institutions and 
forums that communicate the concerns of vulnerable and marginalised communities and give them a voice.  phased, 
risk-conscious implementation in virtual sandboxes. We propose that the first applications of AI in agriculture 
should be implemented in low-risk hybrid cyber-physical environments, or "digital sandboxes," where a variety of 
stakeholders can collaborate to quickly prototype and test new machine learning techniques and related 
technologies. Models and machines could be evaluated in such a cyber-physical space under closely watched, local 
conditions. This is not a whole novel model. For example, it has precedent in biotechnology frameworks that control 
and enforce biosafety procedures in genetic, genomic Digital sandboxes that provide information on potential 
shortcomings of emerging technologies would guarantee the accuracy, safety, and security of experimental 
procedures like autonomous pest and disease detection and control systems. At the same time, lessons may be learnt 
and safe and secure innovations can be accelerated by anonymizing data related to unsuccessful deployment 
attempts and sharing it with agricultural AI communities. Please consult Table No. 1.2: Comparison of Term Crops. 

The AI Lab at Makerere University (https://air.ug/) in Kampala, Uganda, where ML predicts the spread of 
plant diseases, demonstrates how the approach works in an African context. The Hands Free Hectare project 
(https://www.handsfreehectare. com/) at Harper Adams University in the UK, where autonomous precision 
agriculture interventions are tested and validated, is one example of such a cyber-physical space in a European 
context. This strategy offers numerous additional advantages. For example, the environment for safely developing 
AI applications can be established via digital sandboxes operating inside open-science collaborations that connect 
governmental, corporate, and non-profit institutions. 

They can also contribute to the development of guidelines and policies for the responsible rollout of apps. While 
government agencies could grant specific temporary exemptions to testing and learning places like digital sandboxes 
before creating focused, customised regulatory frameworks, regulatory rigidity may hinder the development of 
breakthrough machine learning approaches. Furthermore, the implementation of responsible innovation principles in 
technology design can be facilitated by multi-stakeholder approaches to experimentation and learning, such digital 
sandboxes. In summary AI's widespread application in agriculture is both anticipated and beneficial. However, the 
history of agricultural technical development clearly implies that concentrating on boosting productivity involves 
some hazards, such as escalating inequality and degrading the environment. Agricultural AI needs to steer clear of 
the mistakes made by earlier technologies, and by doing so, carefully manage and improve their situations through 
the use of thorough risk assessments and proactive governance procedures.  
 

5. conclusion 

The broad principles of responsible and participatory AI should be adjusted to the unique issues that agriculture 
faces, both locally and globally, from data collection and curation to development and deployment. Failing to do so 
could lead to the perpetuation of factors that contribute to the depletion of environmental resources, labour 
exploitation, and nutritional insecurity. Despite past errors, technological modernization in agriculture has produced 
significant results. The application of agricultural expert systems and intelligent machinery should draw inspiration 
and guidance from previous achievements. Therefore, in a system so vital to human well-being, it is imperative that 
innovation be approached with balance and that risk assessments and appropriate research and development 
procedures do not hinder innovation. Lastly, as the developing risk landscape covered here is also relevant to 
agricultural systems producing non-food items, producing fibres, fuels, pulp, paper, oils, resins, cosmetics, rubber, 
and plastics should take a similar approach. 
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Table No:1.2 Comparision of Term Crops 

S.No Long Term Crops Long Term Crop 
Problems 

Short Term Crop Ideas Short Term Crop 
Profits 

1 Paddy Water, Weather  Customized land Creation  Short time  Healed  
2 Vegetables  & 

Green Leaves 
 
Huge amount of  
Crops 

Vegetables  Fresh & Liquid Cash 
Green leaves  Fresh & short time 

sales 
 

References 
 

Schmitz, A., & Moss, C. B. Mechanized agriculture: Machine adoption, farm size, and labor displacement. 
AgBioForum 18, 278–296 (2015). 

Wilde, P. Food Policy in the United States: An Introduction (Routledge, 2013). 
Tadele, Z. Orphan crops: their importance and the urgency of improvement. Planta 250, 677–694 (2019). 
Lugo-Morin, D. Indigenous communities and their food systems: a contribution to the current debate. J. 

Ethn. Food 7, 6 (2020). 
Akinola, R., Pereira, L. M., Mabhaudhi, T., de Bruin, F. M. & Rusch, L. A review of indigenous food crops in 

Africa and the implications for more sustainable and healthy food systems. Sustainability 12, 3493 (2020). 
Jose, S. Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor. Syst. 76, 1–10 

(2009). 
Talaviya, T., Shah, D., Patel, N., Yagnik, H. & Shah, M. Implementation of artificial intelligence in agriculture 

for optimisation of irrigation and application of pesticides and herbicides. Artif. Intell. Agricult. 4, 58–73 
(2020). 

Palacios-Lopez, A., Christiaensen, L., & Kilic, T. How much of the labor in African agriculture is provided by 
women? Food Policy 67, 52–63 (2017). 

Alkon, A. H., & Agyeman, J. (eds) Cultivating Food Justice: Race, Class, and Sustainability (MIT Press, 2011). 
Edmonds, E. V. & Pavcnik, N. The effect of trade liberalization on child labor. J. Int. Econ. 65, 401–419 (2005). 
Child Labour in Agriculture (International Labor Organization, 2021). 
Lowder, S. K., Skoet, J. & Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms 

worldwide. World Dev. 87, 16–29 (2016). 
Mehrabi, Z. et al. The global divide in data-driven farming. Nat. Sustain. 4, 154–160 (2021). 
Hennessy, T., Läpple, D. & Moran, B. The digital divide in farming: A problem of access or engagement? 

Appl. Econ. Persp. Policy 38, 474–491 (2016). 
Klerkx, L., Jakku, E., Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 

4.0: New contributions and a future research agenda. NJAS Wageningen J. Life Sci. 90–91, 100315 (2019). 
Wolfert, S., Ge, L., Verdouw, C. & Bogaardt, M. J. Big data in smart farming–a review. Agric. Syst. 153, 69–

80 (2017). 
Levins, R. & Cochrane, W. The treadmill revisited. Land Econ. 72, 550–553 (1996). 
Sontowski, S. et al. Cyber attacks on smart farming infrastructure. In 2020 IEEE 6th Int. Conf. on 

Collaboration and Internet Computing (CIC) 135–143 (IEEE, 2020). 
Cyber-attack hits JBS meat works in Australia, North America. Reuters 

https://www.reuters.com/technology/cyber-attack-hits-jbs-meat-works- australia-north-america-2021-05-
31/ (1 June 2021) 

Sharma, A. $5.9 million ransomware attack on farming co-op may cause food shortage. Ars Technica 
https://arstechnica.com/information-technology/ 2021/09/5-9-million-ransomware-attack-on-farming-co-op-
may-cause-food-shortage/ (21 September 2021) 

Rahwan, I. et al. Machine behaviour. Nature 568, 477–486 (2019) 


